A comprehensive sulfur and oxygen isotope study of sulfur cycling in a shallow, hyper-euxinic meromictic lake

نویسندگان

  • William P. Gilhooly
  • Christopher T. Reinhard
  • Timothy W. Lyons
چکیده

Mahoney Lake is a permanently anoxic and sulfidic (euxinic) lake that has a dense plate of purple sulfur bacteria positioned at mid-water depth ( 7 m) where free sulfide intercepts the photic zone. We analyzed the isotopic composition of sulfate (dSSO4 and d OSO4), sulfide (d SH2S), and the water (d OH2O) to track the potentially coupled processes of dissimilatory sulfate reduction and phototrophic sulfide oxidation within an aquatic environment with extremely high sulfide concentrations (>30 mM). Large isotopic offsets observed between sulfate and sulfide within the monimolimnion (dSSO4-H2S = 51‰) and within pore waters along the oxic margin (d SSO4-H2S > 50‰) are consistent with sulfate reduction in both the sediments and the anoxic water column. Given the high sulfide concentrations of the lake, sulfur disproportionation is likely inoperable or limited to a very narrow zone in the chemocline, and therefore the large instantaneous fractionations are best explained by the microbial process of sulfate reduction. Pyrite extracted from the sediments reflects the isotopic composition of water column sulfide, suggesting that pyrite buried in the euxinic depocenter of the lake formed in the water column. The offset between sulfate and dissolved sulfide decreases at the chemocline (dSSO4-H2S = 37‰), a trend possibly explained by elevated sulfate reduction rates and inconsistent with appreciable disproportionation within this interval. Water column sulfate exhibits a linear response in dOSO4–d SSO4 and the slope of this relationship suggests relatively high sulfate reduction rates that appear to respond to seasonal changes in the productivity of purple sulfur bacteria. Although photosynthetic activity within the microbial plate influences the dOSO4–d SSO4 relationship, the biosignature for photosynthetic sulfur bacteria is restricted to the oxic/anoxic transition zone and is apparently minor relative to the more prevalent process of sulfate reduction operative throughout the light-deprived deeper anoxic water column and sediment pore waters. 2016 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carotenoid biomarkers as an imperfect reflection of the anoxygenic phototrophic community in meromictic Fayetteville Green Lake.

Organic biomarkers in marine sedimentary rocks hold important clues about the early history of Earth's surface environment. The chemical relicts of carotenoids from anoxygenic sulfur bacteria are of particular interest to geoscientists because of their potential to signal episodes of marine photic-zone euxinia such as those proposed for extended periods in the Proterozoic as well as brief inter...

متن کامل

Carbon and Sulfur Cycling below the Chemocline in a Meromictic Lake and the Identification of a Novel Taxonomic Lineage in the FCB Superphylum, Candidatus Aegiribacteria

Mahoney Lake in British Columbia is an extreme meromictic system with unusually high levels of sulfate and sulfide present in the water column. As is common in strongly stratified lakes, Mahoney Lake hosts a dense, sulfide-oxidizing phototrophic microbial community where light reaches the chemocline. Below this "plate," the euxinic hypolimnion is anoxic, eutrophic, saline, and rich in sulfide, ...

متن کامل

Vertical distribution of major sulfate-reducing bacteria in a shallow eutrophic meromictic lake.

The vertical distribution of sulfate-reducing bacteria was investigated in a shallow, eutrophic, meromictic lake, Lake Harutori, located in a residential area of Kushiro, Japan. A steep chemocline, characterized by gradients of oxygen, sulfide and salinity, was found at a depth of 3.5-4.0 m. The sulfide concentration at the bottom of the lake was high (up to a concentration of 10.7 mM). Clone l...

متن کامل

Sulfur-oxidizing bacteria in Soap Lake (Washington State), a meromictic, haloalkaline lake with an unprecedented high sulfide content.

Culture-dependent and -independent techniques were used to study the diversity of chemolithoautotrophic sulfur-oxidizing bacteria in Soap Lake (Washington State), a meromictic, haloalkaline lake containing an unprecedentedly high sulfide concentration in the anoxic monimolimnion. Both approaches revealed the dominance of bacteria belonging to the genus Thioalkalimicrobium, which are common inha...

متن کامل

Phototrophic Fe(II)-oxidation in the chemocline of a ferruginous meromictic lake

Precambrian Banded Iron Formation (BIF) deposition was conventionally attributed to the precipitation of iron-oxides resulting from the abiotic reaction of ferrous iron (Fe(II)) with photosynthetically produced oxygen. Earliest traces of oxygen date from 2.7 Ga, thus raising questions as to what may have caused BIF precipitation before oxygenic photosynthesis evolved. The discovery of anoxygeni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016